Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38117255

RESUMEN

In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.


Asunto(s)
Células Endoteliales , Ganglios Espinales , Humanos , Macrófagos , Pericitos , Permeabilidad
2.
Brain Behav Immun ; 114: 371-382, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683961

RESUMEN

Recent translational work has shown that fibromyalgia might be an autoimmune condition with pathogenic mechanisms mediated by a peripheral, pain-inducing action of immunoglobulin G (IgG) antibodies binding to satellite glia cells (SGC) in the dorsal root ganglia. A first clinical assessment of the postulated autoimmunity showed that fibromyalgia subjects (FMS) had elevated levels of antibodies against SGC (termed anti-SGC IgG) compared to healthy controls and that anti-SGC IgG were associated with a more severe disease status. The overarching aim of the current study was to determine whether the role of anti-SGC IgG in driving pain is exclusively through peripheral mechanisms, as indirectly shown so far, or could be attributed also to central mechanisms. To this end, we wanted to first confirm, in a larger cohort of FMS, the relation between anti-SGC IgG and pain-related clinical measures. Secondly, we explored the associations of these autoantibodies with brain metabolite concentrations (assessed via magnetic resonance spectroscopy, MRS) and pressure-evoked cerebral pain processing (assessed via functional magnetic resonance imaging, fMRI) in FMS. Proton MRS was performed in the thalamus and rostral anterior cingulate cortex (rACC) of FMS and concentrations of a wide spectrum of metabolites were assessed. During fMRI, FMS received individually calibrated painful pressure stimuli corresponding to low and high pain intensities. Our results confirmed a positive correlation between anti-SGC IgG and clinical measures assessing condition severity. Additionally, FMS with high anti-SGC IgG levels had higher pain intensity and a worse disease status than FMS with low anti-SGC IgG levels. Further, anti-SGC IgG levels negatively correlated with metabolites such as scyllo-inositol in thalamus and rACC as well as with total choline and macromolecule 12 in thalamus, thus linking anti-SGC IgG levels to the concentration of metabolites in the brain of FMS. However, anti-SGC IgG levels in FMS were not associated with the sensitivity to pressure pain or the cerebral processing of evoked pressure pain. Taken together, our results suggest that anti-SGC IgG might be clinically relevant for spontaneous, non-evoked pain. Our current and previous translational and clinical findings could provide a rationale to try new antibody-related treatments in FMS.

3.
Brain Behav Immun ; 113: 212-227, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37437817

RESUMEN

Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.


Asunto(s)
Artritis Reumatoide , Autoanticuerpos , Animales , Ratones , Receptores de IgG , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Dolor
4.
Pain ; 163(10): 1999-2013, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086123

RESUMEN

ABSTRACT: Rheumatic diseases are often associated to debilitating chronic pain, which remains difficult to treat and requires new therapeutic strategies. We had previously identified lysophosphatidylcholine (LPC) in the synovial fluids from few patients and shown its effect as a positive modulator of acid-sensing ion channel 3 (ASIC3) able to induce acute cutaneous pain in rodents. However, the possible involvement of LPC in chronic joint pain remained completely unknown. Here, we show, from 2 independent cohorts of patients with painful rheumatic diseases, that the synovial fluid levels of LPC are significantly elevated, especially the LPC16:0 species, compared with postmortem control subjects. Moreover, LPC16:0 levels correlated with pain outcomes in a cohort of osteoarthritis patients. However, LPC16:0 do not appear to be the hallmark of a particular joint disease because similar levels are found in the synovial fluids of a second cohort of patients with various rheumatic diseases. The mechanism of action was next explored by developing a pathology-derived rodent model. Intra-articular injections of LPC16:0 is a triggering factor of chronic joint pain in both male and female mice, ultimately leading to persistent pain and anxiety-like behaviors. All these effects are dependent on ASIC3 channels, which drive sufficient peripheral inputs to generate spinal sensitization processes. This study brings evidences from mouse and human supporting a role for LPC16:0 via ASIC3 channels in chronic pain arising from joints, with potential implications for pain management in osteoarthritis and possibly across other rheumatic diseases.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Dolor Crónico , Osteoartritis , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Artralgia/etiología , Femenino , Humanos , Lisofosfatidilcolinas/toxicidad , Masculino , Ratones , Osteoartritis/complicaciones
5.
Pain ; 163(8): 1542-1559, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34924556

RESUMEN

ABSTRACT: Several bone conditions, eg, bone cancer, osteoporosis, and rheumatoid arthritis (RA), are associated with a risk of developing persistent pain. Increased osteoclast activity is often the hallmark of these bony pathologies and not only leads to bone remodeling but is also a source of pronociceptive factors that sensitize the bone-innervating nociceptors. Although historically bone loss in RA has been believed to be a consequence of inflammation, both bone erosion and pain can occur years before the symptom onset. Here, we have addressed the disconnection between inflammation, pain, and bone erosion by using a combination of 2 monoclonal antibodies isolated from B cells of patients with RA. We have found that mice injected with B02/B09 monoclonal antibodies (mAbs) developed a long-lasting mechanical hypersensitivity that was accompanied by bone erosion in the absence of joint edema or synovitis. Intriguingly, we have noted a lack of analgesic effect of naproxen and a moderate elevation of few inflammatory factors in the ankle joints suggesting that B02/B09-induced pain-like behavior does not depend on inflammatory processes. By contrast, we found that inhibiting osteoclast activity and acid-sensing ion channel 3 signaling prevented the development of B02/B09-mediated mechanical hypersensitivity. Moreover, we have identified secretory phospholipase A2 and lysophosphatidylcholine 16:0 as critical components of B02/B09-induced pain-like behavior and shown that treatment with a secretory phospholipase A2 inhibitor reversed B02/B09-induced mechanical hypersensitivity and bone erosion. Taken together, our study suggests a potential link between bone erosion and pain in a state of subclinical inflammation and offers a step forward in understanding the mechanisms of bone pain in diseases such as RA.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Artritis Reumatoide , Osteoclastos , Dolor , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Inflamación/complicaciones , Ratones , Osteoclastos/patología , Dolor/patología
6.
Pain ; 163(7): e837-e849, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561389

RESUMEN

ABSTRACT: Rheumatoid arthritis is frequently associated with chronic pain that still remains difficult to treat. Targeting nerve growth factor (NGF) seems very effective to reduce pain in at least osteoarthritis and chronic low back pain but leads to some potential adverse events. Our aim was to better understand the involvement of the intracellular signalling pathways activated by NGF through its specific tyrosine kinase type A (TrkA) receptor in the pathophysiology of rheumatoid arthritis using the complete Freund adjuvant model in our knock-in TrkA/C mice. Our multimodal study demonstrated that knock-in TrkA/C mice exhibited a specific decrease of mechanical allodynia, weight-bearing deficit, peptidergic (CGRP+) and sympathetic (TH+) peripheral nerve sprouting in the joints, a reduction in osteoclast activity and bone resorption markers, and a decrease of CD68-positive cells in the joint with no apparent changes in joint inflammation compared with wild-type mice after arthritis. Finally, transcriptomic analysis shows several differences in dorsal root ganglion mRNA expression of putative mechanotransducers, such as acid-sensing ionic channel 3 and TWIK-related arachidonic acid activated K+ channel, as well as intracellular pathways, such as c-Jun, in the joint or dorsal root ganglia. These results suggest that TrkA-specific intracellular signalling pathways are specifically involved in mechanical hypersensitivity and bone alterations after arthritis using TrkA/C mice.


Asunto(s)
Artritis Reumatoide , Hiperalgesia , Receptor trkA , Transducción de Señal , Animales , Artritis Reumatoide/complicaciones , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Ratones , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptor trkA/genética
7.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196305

RESUMEN

Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.


Asunto(s)
Fibromialgia/inmunología , Fibromialgia/fisiopatología , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Fibromialgia/etiología , Ganglios Espinales/fisiopatología , Humanos , Inmunización Pasiva , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Nociceptores/inmunología , Nociceptores/fisiología , Dolor/fisiopatología , Umbral del Dolor/fisiología
8.
Pain ; 160(1): 224-236, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30247264

RESUMEN

Recent studies have suggested a sexually dimorphic role of spinal glial cells in the maintenance of mechanical hypersensitivity in rodent models of chronic pain. We have used the collagen antibody-induced arthritis (CAIA) mouse model to examine differences between males and females in the context of spinal regulation of arthritis-induced pain. We have focused on the late phase of this model when joint inflammation has resolved, but mechanical hypersensitivity persists. Although the intensity of substance P, calcitonin gene-related peptide, and galanin immunoreactivity in the spinal cord was not different from controls, the intensity of microglia (Iba-1) and astrocyte (glial fibrillary acidic protein) markers was elevated in both males and females. Intrathecal administration of the glial inhibitors minocycline and pentoxifylline reversed mechanical thresholds in male, but not in female mice. We isolated resident microglia from the lumbar dorsal horns and observed a significantly lower number of microglial cells in females by flow cytometry analysis. However, although genome-wide RNA sequencing results pointed to several transcriptional differences between male and female microglia, no convincing differences were identified between control and CAIA groups. Taken together, these findings suggest that there are subtle sex differences in microglial expression profiles independent of arthritis. Our experiments failed to identify the underlying mRNA correlates of microglial actions in the late phase of the CAIA model. It is likely that transcriptional changes are either subtle and highly localised and therefore difficult to identify with bulk isolation techniques or that other factors, such as changes in protein expression or epigenetic modifications, are at play.


Asunto(s)
Anticuerpos/toxicidad , Artritis/inducido químicamente , Colágeno/inmunología , Microglía/metabolismo , Médula Espinal/patología , Transcriptoma/fisiología , Animales , Antígenos CD/metabolismo , Artritis/patología , Modelos Animales de Enfermedad , Femenino , Hiperalgesia/etiología , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/metabolismo , Factores de Tiempo , Transcriptoma/efectos de los fármacos
10.
Heart ; 104(24): 2026-2034, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29804097

RESUMEN

OBJECTIVES: Patients with rheumatoid arthritis (RA) display an increased risk of heart failure independent of traditional cardiovascular risk factors. To elucidate myocardial disease in RA, we have investigated molecular and cellular remodelling of the heart in an established mouse model of RA. METHODS: The collagen antibody-induced arthritis (CAIA) RA mouse model is characterised by joint inflammation and increased inflammatory markers in the serum. We used CAIA mice in the postinflammatory phase that resembles medically controlled RA or RA in remission. Hearts were collected for cardiomyocyte isolation, biochemistry and histology analysis. RESULTS: Hearts from mice subjected to CAIA displayed hypertrophy (heart/body weight, mean±SD: 5.9±0.8vs 5.1±0.7 mg/g, p<0.05), fibrosis and reduced left ventricular fractional shortening compared with control. Cardiomyocytes from CAIA mice showed reduced cytosolic [Ca2+]i transient amplitudes (F/F0, mean±SD: 3.0±1.2vs 3.6±1.5, p<0.05) that was linked to reductions in sarcoplasmic reticulum (SR) Ca2+ store (F/F0, mean±SD: 3.5±1.3vs 4.4±1.3, p<0.01) measured with Ca2+ imaging. This was associated to lower fractional shortening in the cardiomyocytes from the CAIA mice (%FS, mean±SD: 3.4±2.2 vs 4.6%±2.3%, p<0.05). Ca2+ handling proteins displayed oxidation-dependent posttranslational modifications that together with an increase in superoxide dismutase expression indicate a cell environment with oxidative stress. CONCLUSIONS: This study shows that inflammation during active RA has long-term consequences on molecular remodelling and contractile function of the heart, which further supports that rheumatology patients should be followed for development of heart failure.


Asunto(s)
Artritis Experimental/complicaciones , Artritis Reumatoide/complicaciones , Cardiomiopatías/etiología , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Función Ventricular Izquierda , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Experimental/fisiopatología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/fisiopatología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Femenino , Fibrosis , Masculino , Ratones Endogámicos BALB C , Miocitos Cardíacos/patología , Procesamiento Proteico-Postraduccional , Retículo Sarcoplasmático/metabolismo , Remodelación Ventricular
11.
Pharmacol Rep ; 69(1): 13-21, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27755991

RESUMEN

BACKGROUND: Schizophrenia is a psychiatric disorder characterized by positive and negative symptoms often accompanied by depression and cognitive deficits. Positive symptoms, like delusions and hallucinations are caused by an excess of dopamine (DA) signaling and are treated with the second generation antipsychotic drugs. Negative symptoms of schizophrenia are represented by social withdrawal, apathy and blunted emotional response. It was demonstrated that co-administration of risperidone and selective serotonin reuptake inhibitors alleviated depressive symptoms and cognitive dysfunction in animal models of schizophrenia. Moreover, combination of fluoxetine or mirtazapine with risperidone increased DA and 5-hydroxytryptamine (5-HT) release in the rat frontal cortex more potently than either drug given separately. The present study aimed to investigate whether combination of risperidone and escitalopram is effective in increasing DA and 5-HT release. METHODS: The extracellular level of neurotransmitters in the rat frontal cortex and nucleus accumbens was examined using microdialysis in freely moving animals. The dialysate concentration of DA and 5-HT was assayed by HPLC. RESULTS: It was found that risperidone (0.2 and 1mg/kg) and escitalopram (5 and 10mg/kg) given together significantly increased cortical DA and 5-HT levels and were more efficient in enhancing neurotransmitter concentrations than any single-drug treatment. A similar effect on DA and 5-HT release was observed in the nucleus accumbens after administration of risperidone (1mg/kg) and escitalopram (5mg/kg). CONCLUSIONS: The present study demonstrates that co-administration of risperidone and escitalopram may be used to treat positive and negative symptoms of schizophrenia and will allow to minimize the drugs' side effects.


Asunto(s)
Antipsicóticos/administración & dosificación , Citalopram/administración & dosificación , Risperidona/administración & dosificación , Esquizofrenia/tratamiento farmacológico , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Animales , Antipsicóticos/efectos adversos , Citalopram/efectos adversos , Dopamina/metabolismo , Quimioterapia Combinada , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Risperidona/efectos adversos , Esquizofrenia/metabolismo , Serotonina/metabolismo , Resultado del Tratamiento
12.
Neurotox Res ; 29(3): 394-407, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26501352

RESUMEN

New psychoactive "designer drugs" are synthetic compounds developed to provide similar effects to illicit drugs of abuse, but not subjected to legal control. The rapidly changing legal status of novel psychoactive drugs triggers the development of new compounds, analogs of well-known amphetamine or mescaline. New designer drugs used as substitutes in ecstasy pills are the least investigated and can cause life-threatening effects on users. The aim of our research was to examine the effects of acute administration of 4-methoxyamphetamine (PMA, 5 and 10 mg/kg), 4-methoxy-N-methylamphetamine (PMMA, 5 and 10 mg/kg), and mephedrone (MEPH, 5, 10 and 20 mg/kg) on extracellular and tissue level of dopamine (DA), 5-hydroxytryptamine (5-HT) and their metabolites in rat brain, by microdialysis method in freely moving animals and HPLC. Similarly to 3,4-methylenedioxymethamphetamine (MDMA, 5 and 10 mg/kg) PMA, PMMA and MEPH enhanced the release of DA and 5-HT in rat striatum, nucleus accumbens, and frontal cortex. DA tissue content was increased by MEPH and PMMA in striatum, by MEPH, PMA, and PMMA in nucleus accumbens, and by PMA in frontal cortex. Instead, cortical DA level was decreased by MEPH and PMMA. MEPH did not influence 5-HT tissue level in striatum and nucleus accumbens, but decreased its level in frontal cortex. PMMA increased 5-HT content in striatum, while PMA enhanced it in nucleus accumbens and frontal cortex. Observed changes in brain monoamines and their metabolites by new psychoactive drugs suggest that these drugs may be capable of development of dependence. Further experiments are needed to fully investigate the neurotoxic and abuse potential of those drugs.


Asunto(s)
3,4-Metilenodioxianfetamina/análogos & derivados , Anfetaminas/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , Metanfetamina/análogos & derivados , Psicotrópicos/toxicidad , Serotonina/metabolismo , 3,4-Metilenodioxianfetamina/toxicidad , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Metanfetamina/toxicidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...